
General Similarity Solution of the Fragmentation Kinetics Equation

A. Elhanbalya and A. Elgarayhi

Theoretical Physics Research Group, Faculty of Science, Mansoura University,
Mansoura 35516, Egypt
a Present address: King Saud University, College of Science, Al-Qasseem Branch,

P. O. 237, Buriedah 81999

Reprint requests to A. Elh.; E-mail: a elhanbaly@yahoo.com

Z. Naturforsch. 59a, 309 – 315 (2004); received October 26, 2003

In this article we have discussed a new application of Lie’s similarity method on the integro-
differential fragmentation equation. A wide variety of the similarity solutions of the fragmentation
equation has been obtained. Some of them are compared with those obtained by other authors.
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1. Introduction

Fragmentation results from a variety of physi-
cal processes, such as erosion, polymer degradation,
grinding, oxidation and dissolution. The authors of [1 –
3] determined the distribution function by statisti-
cal methods considering random scission processes
where all bonds break with equal probability [2]. Later
Saito [4] and Jellinek et al. [5] studied continuous
and discrete fragmentation processes, respectively. The
continuous model introduced by Saito has wide appli-
cations in physics, see for instance Peterson [6].

However, a linear fragmentation rate equation de-
scribing polymer breakup due to degradation of bonds
has received considerable attention [7 – 10]. Besides, a
nonlinear rate equation describing fragmentation due
to repeated collisions between particles has been de-
veloped [10]. These rate equations are similar in spirit
to the well-known nonlinear Smoluchowski equation
for coagulation [11 – 12]. Even though the spatial ho-
mogeneity inherent in rate equations is sometimes
obeyed only approximately in experiments, rate equa-
tions have nevertheless added considerable insight to
the overall understanding of fragmentation. Compared
with numerical simulations [13 – 15], the advantage of
the rate equation approach is its generality: general
forms for fragmentation rates and daughter distribution
allow for solutions which span a spectrum of particle
morphologies, external conditions, and fragmentation
processes, whereas numerical simulations typically re-
quire specific particle morphologies and external con-
ditions.
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Much of the theoretical work is based on the de-
scription of fragmentation by a system of linear rate
equations in the discrete forms which are suitable for
numerical analysis. For an analytical treatment of frag-
mentation the continuous models are more appropri-
ate. The continuous models are typically represented
by a linear integro-differential balance equation. In a
generalized nonlinear model Cheng et al. [10] pro-
posed a fragmentation process caused by repeated col-
lisions between clusters. Amemiya [16] introduced on
the other hand an inhomogenity by assuming bonds of
different breaking probability dispersed throughout the
system. The dependence of the scission rate on the size
of the chains was considered by Basedow et al. [17]
and Ballauf et al. [18] in theoretical and numerical
work.

Following the work of Ziff et al. [7], the fragmenta-
tion rate equation with homogenous forces of the break
up kernel can be described by the following integro-
differential equation

∂n(x, t)
∂t

= −n(x, t)
x∫

0

F(y,x− y)dy

+ 2

∞∫
x

n(y, t)F(x,y− x)dy,

(1)

where n(x, t) is the number of chains of continuous
length x at time t and the kernel F(x,y) gives the rate
that a segment breaks up into two parts of lengths
x and y. Different forms of the break up kernel lead
to different classes of the kinetic Eq. (1), for details
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see [7]. One of these classes is

∂u(x, t)
∂t

+ xγ+1u(x,t)−2

∞∫
x

yγu(y,t)dt = 0, (2)

where

F(x,y) = (x+ y)γ , (3)

F(λ x,λ y) = λ γF(x+ y), u(x,t) = n(x,t). (4)

The partial differential equation corresponding to (2) is
obtained by differentiating (2) with respect to x

uxt(x, t) =−xγ((1+γ)+2)u(x,t)−x1+γux(x,t), (5)

where the exponent γ determines the degree of homo-
geneity of this model.

Normally Lie’s technique is successfully applied
to partial differential equations such as (5). In spite
of the growing interest in the application of Lie’s
method of solving differential equations, the number of
cases where Lie’s method has been applied to integro-
differential equations is very small.

So, the motivation of this paper is to show first
how one can use Lie’s group approach for integro-
differential equations such as the fragmentation equa-
tion (2). In addition, we also aim to obtain the general
similarity solution and classify the obtained solutions
in terms of the Lie group parameters.

2. Lie Analysis

We consider the one-parameter (ε) group of in-
finitesimal transformations

x∗ = x+ εξ (x,t,u)+ 0(ε2),

t∗ = t + εT (x,t,u)+ 0(ε2),

u∗ = u+ εη(x,t,u)+ 0(ε2),

u∗t∗ = ut + ε[ηt]+ 0(ε2),
∞∫

x∗
yγu∗dy =

∞∫
x

yγ udy+ ε[∆I],

(6)

where the infinitesimal [ηt] is given by

[ηt] = ηt +(ηu −Tt)ut − ξtux −Tuu2
t − ξuuxut. (7)

In addition, it can be proved that

[∆I] =−ξ xγu (8)

+
∞∫

x

[
nξ yγ−1u+ yγη + yγu

[
∂ξ
∂y

+
∂ξ
∂u

∂u
∂y

]]
dy.

In the infinitesimal representation, an equation corre-
sponding to the transformation (6) can be written as

χ = ξ
∂
∂x

+T
∂
∂t

+η
∂
∂u

+[ηt]
∂

∂ut
+[∆I]

∂
∂

∫
yγudy

, (9)

where T,ξ ,η are all functions of t,x,u which can
be determined using the invariant Lie group ap-
proach [19]. The infinitesimal criteria for the invari-
ance of (2) under the group (6) is given by

χH = λ (x, t,u)H, (10)

where

H
(

x, t,u,ut

∞∫
x

yγudy
)

= ut +(xγ+1)u−
∞∫

x

yγudy, (11)

and λ (x, t,u) is an arbitrary function to be determined.
By means of (9), (10) and (11), the determining equa-
tions for T,ξ ,η and λ are

∂η
∂u

− ∂T
∂t

= λ (x, t,u),
∂ξ
∂t

=
∂ξ
∂u

= 0,

∂T
∂x

=
∂T
∂u

= 0,
∂2η
∂u2 = 0,

∂η
∂t

+ xγ+1η +(1+ γ)xγξ u = λ (x, t,u)xγ+1u,

∞∫
x

[
γyγ+1ξ u+ yγη + yγu

[
∂ξ
∂y

+
∂ξ
∂u

∂u
∂y

]]
dy

= λ (x, t,u)
∞∫

x

yγudy.

(12)

After considerable algebra and many integrations, the
set of equations (12) yields the most general Lie group
symmetries

T = a0t + a1, ξ =
a2

(γ + 1)
x−γ − a0

1+ γ
x,

η = (a3 −a2t)u+ φ(x, t),
(13)

where ai(i = 0,1,2,3) are constants and φ(x, t) has to
solve the original equation (2). Thus the problem of
finding the full Lie symmetries of (12) involves find-
ing general solutions of (2). This is an impossible task,
therefore we choose φ(x, t) = 0 with no loss in general-
ity. Now, it is clear that the most extended Lie group of
transformations admitted by the partial integro differ-
ential equation (2) depends on four arbitrary group pa-
rameters, a0,a1,a2,a3. The knowledge of the infinites-
imal elements T , ξ , and η enables us to determine
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Table 1. Similarity forms and reduced dynamic equations of the fragmentation.

Case Similarity forms Reduced dynamic equation of aerosols

1 u = F(s)(a0t +a1)m exp

[
− a2

a0
t

]
, s = (a0t +a1)(a2 −a0xγ+1), a0s

dF
ds

+(a0m− γ +1
a0

s)F(s)+
2
a0

∞∫
s

F(s′)ds′ = 0

m =
1
a0

(
a3 +

a1a2

a0

)

2 u = F(s)(a0t +a1)a3/a0 , s = x(a0t +a1)1/1+γ ,
a0

1+ γ
s

dF
ds

+(a3 + s1+γ)F(s)−2
∞∫
s

s′γ F(s′)ds′ = 0

3 u = F(s)exp

[
a3

a2
− s

]
x1+γ , s = t (1+ γ)

(
a3

a2
− s

)
dF
ds

+2F(s) = 0

4 u = F(s)e

1
a1

(
a3t−

a2

2
t2

)
, s =

a2

a1
t − xγ+1 a2

a1

dF
ds

+
(

a3

a1
− s

)
F(s)+

2
γ +1

∞∫
s

F(s′)ds′ = 0

5 u = F(s), s = x sγ+1F(s)−2
∞∫
s

s′γ F(s′)ds′ = 0

6 u = F(s)e

a3

a1
t
, s = x

(
a3

a1
+ sγ+1

)
F(s)−2

∞∫
s

s′γ F(s′)ds′ = 0

λ (x, t,u) via the first equation in (12). In addition it
gives rise to the extended symmetries generated by

χ1 =
∂
∂t

, χ2 = u
∂
∂u

, χ3 = t
∂
∂t

− 1
γ + 1

x
∂
∂x

,

χ4 =
1

1+ γ
x−γ ∂

∂x
− tu

∂
∂u

.

(14)

These four linear independent vector fields deter-
mine the symmetries under which the partial integro-
differential equation (2) is invariant, and in addition the
symmetries that constitute a Lie algebra. The vector
fields χ2 and χ3 contain the scaling properties of u, t,x,
and χ1 corresponds to a translation in time. The com-
mutation relations of the four vector fields χ1,χ2,χ3
and χ4 are

[χ1,χ3] = χ1, [χ1,χ4] = χ2, [χ3,χ4] = χ4, (15)

and the rest equals zero. We can use a combination
of these vector fields to classify the type of similar-
ity solutions. One may find the six essential combi-
nations listed in Table 1. These produce the essential
types of reduced partial integro-differential fragmen-
tation equations in one new variable s as well as the
similar solution F(s).

3. General Similarity Solution

A linear combination of the four vector fields
χ1,χ2,χ3 and χ4, where the group parameters
a0,a1,a2, and a3 are all unequal to zero determines

the general similarity solutions of the fragmentation
equation. Thus finding the similarity solution associ-
ated with the combination χ1 + χ2 + χ3 + χ4 solves the
general problem, and hence the solution of other cases
in Table 1 appears to be a special class of the general
one. However, integrating the characteristic equation

T−1dt = ξ−1dx = η−1du, (16)

with the group (13), yields the general similarity solu-
tion

u = F(s)(a0t + a1)m exp

[
−a2

a0
t

]
, (17)

where

s = (a0t + a1)(a2 −a0xγ+1),

m =
1

a2
0

(a0a3 + a1a2).
(18)

Substitution this similarity solution into (2) results in
the following reduced fragmentation equation:

a0s
dF
ds

+(a0m− γ + 1
a0

s)F(s)+
2
a0

∞∫
x

F(s′)ds′ = 0.

(19)

Use of the substitution

g(s) =
∞∫

x

F(s′)ds′ (20)
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transforms (19) to the following second order differen-
tial equation with variable coefficients

s
d2g
ds2 +

(
m− γ + 1

a2
0

s

)
dg
ds

− 2
a0

g(s) = 0. (21)

Rescaling s by ζ = γ+1
a0

s, (21) can be reduced to the
standard form of Kummers’s equation

ζ =
dg

dζ 2 +(m− ζ )
dg
dζ

− 2
γ + 1

g(ζ ) = 0. (22)

The complete solution of (22) can be expressed
in terms of the confluent hypergeometric function
1F1(a,b,ζ ) which consists of a convergent series for ζ .
However, the solution is (see for instance Kamke [20])

g(ζ ) = A1F1

( 2
γ + 1

,m;ζ
)

+ B1ζ 1−mF1

( 2
γ + 1

−m+ 1,2−m;ζ
)
,

(23)

where 1F1(a,b,ζ ) is given by the series

1F1(a,b,ζ ) = 1+
∞

∑
r=0

(a)rζ r

(b)rr
, (24)

and (a)r, (b)r are Pochhammer’s symbols define
by (a)r = Γ (a+ b)/Γ (a), (b)r = Γ (b+ r)/Γ (b).
A and B are two arbitrary constants. Inverting the
transformation used previously, one can write down
the most general similarity solution of the integro-dif-
ferential fragmentation equation. In addition to the
general similarity for the fragmentation equation (2),

we distinguish four particular classes of similarity so-
lutions.

First Class:

This class of similarity solution can be obtained if
we put a0 = 0 in (13). With this choice the general sim-
ilarity solution (17) reduces to

u = F(s)exp
[ 1

a1

(
a3t − a2

2
t2

)]
,

s =
a2

a1
t − x1+γ .

(25)

This case corresponds to the vector field combination
χ1 + χ2 + χ4. Inserting the above similarity solution
into (2), the reduced fragmentation equation is

a2

a1
+

dF
ds

+
(a3

a4
− s

)
F(s)+

2
γ + 1

∞∫
s

F(s′)ds′ = 0.

(26)

Via the substitution

g(s) =
∞∫

s

f (s′)ds′, (27)

the reduced fragmentation equation (26) is transformed
to the second order differential equation with variable
coefficients

d2g
ds2 +

(
a3

a2
− a1

a2
s

)
dg
ds

− 2(a1/a2)
1+ γ

g(s) = 0, (28)

whose solution is

g(s) = exp


− s

[
B1(1+ γ)−B2(1+ γ)s+

√
8(1+ γ)B2 +(1+ γ)(B1−B2s)2

]
2(1+ γ)




·
[

c1 exp

[
s
√

8(1+ γ)B2 +(1+ γ)(B1−B2s)2

1+ γ

]
+ c2

]
,

(29)

where B1 = a3/a2, B2 = a1/a2, c1 and c2 are arbi-
trary constants. Inverting the transformations used pre-
viously, one can express the solution in terms of the
original coordinates x,t,u. The behavior of u(x,t) ver-
sus x for fixed values of time is shown graphically in
Figure 1.

It is worth noting that on the one hand if a2 = 0, the
similarity solution (25) reduces to

u = F(s)t, s = txγ+1, (30)

and on the other hand this leads to the solutions dis-
cussed previously by McGrady et al. [9] and Corngold
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Fig. 1. The behavior of the similarity solution (29) versus x
for t = 0.1,0.2,0.3.

et al. [21]. This case corresponds to the particular case
χ2 + χ3. This means that the solutions obtained by [9]
and [21] are thus similarity solution corresponding to
the particular case χ2 + χ3.

Second Class:

In this case a3 = 0, integrating the characteristic
Eq. (16) yields

u = F(s)exp
[
− c

2
t2

]
,

s = x1+γ − ct, c =
a2

a1
.

(31)

The reduced equation becomes

d2g
ds2 − 1

c
s

dg
ds

− 2
c(1+ γ)

g(s) = 0, (32)

where g(s) is defined by (27). Using the scaling trans-
formation ζ =

√
1/cs, (32) transforms to

d2g
dζ 2 − ζ

dg
dζ

− kg(ζ ) = 0, (33)

where k = 2/(1+ γ). The general solution of this or-
dinary differential equation can be given in terms of a
special type of Fox function [22]:

g(ζ ) = c1H12
23


−2ζ 2

∣∣∣∣∣∣∣∣
(0,1)

(
1− 1

2
k,1

)

(0,1) (0,2)
(

1− 1
2

k,0

)

+c2ζH12

23


−2ζ 2

∣∣∣∣∣∣∣∣
(0,1)

(
1
2
(1−k),1

)

(0,1) (−1,2)
(

1
2
(1−k),0

)

 , (34)

or equivalently by Maitland’s generalized hypergeometric functions, which are also called Wright functions:

g(ζ ) = c12Ψ3




(1,1)
(

1
2

k,1

)
;2ζ 2

(1,2)
(

1
2

k,0

)

+ c2ζ2Ψ3




(1,1)
(

1
2
(k + 1),1

)
;2ζ 2

(2,2)
(

1
2
(k + 1),0

)

 . (35)

The Wright function, see [23], are defined as

pΨq


(a1,α1) . . . (ap,αq)

;ζ
(b1,β1) . . . (bq,βp)




=
∞

∑
k=0

∏p
j=1 Γ (a j + α jk)

∏q
j=1 Γ (b j + β jk)

(−ζ )k

k
.

Third Class:

A further similarity solution can be generated by
the vector field χ1 + χ2, which corresponds to a trans-

lational symmetry in time and scaling of the depen-
dent variable u. Solving the corresponding characteris-
tic Eq. (16) yields

u = F(s)exp

[
a3

a1
t

]
, s = x. (36)

With the similarity representation (6) – (10), the frag-
mentation equation (2) reduces to the equation

(
a3

a2
+ s1+γ

)
F(s)−2

∞∫
s

s′γF(s′)ds′ = 0. (37)
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Fig. 2. The behavior of the similarity solution (42) versus x.

By means of the transformation ζ = s1+γ/(1+ γ), (37)
becomes

(
a3

a2
+(1+ γ)ζ

)
F(ζ )−2

∞∫
ζ

F(ζ ′)dζ ′ = 0. (38)

Employing (27), this integral equation can be trans-
formed to(

a3

a2
+(1+ γ)ζ

)
dg
dζ

+ 2g = 0, (39)

which yields

g = g0

(
a3

a2
+(1+ γ)ζ

)− 2
1+γ

, (40)

where g0 is a constant. By means of the transforma-
tion (27), with (36) and (40) one can write down an
expression for u in terms of x and t:

u = g0

(
a3

a2
+(1+ γ)x1+γ

)− 3+γ
1+γ

exp

[
a3

a1
t

]
. (41)

Since the steady solution of the fragmentation process
is very important from the practical point of view, we
are interested in finding such a solution. Considering
a3 = 0, the stationary solution of the fragmentation
equation is

u(x) = g0x−(3+γ). (42)

We conclude that, when a3 = 0, this stationary so-
lution of the fragmentation equation (2) is a similar-
ity solution corresponding to time translation invari-
ance. This type of solution is shown graphically in
Figure 2.

Fig. 3. The behavior of the similarity solution (47) versus t
for x = 0.2,0.25,0.3.

Fig. 4. The behavior of the similarity solution (47) versus x
for t = 0.1,0.3.

Fourth Class:

This case is related to a0 = a1 = 0. The correspond-
ing characteristic equation in this case is

dt
0

=
(1+ γ)dx

x−γ =
du

(a3 −a2t)u
. (43)

Integrating the above equation yields the similarity
transformation

s = t, u = F(s)exp

[
a3

a2
− s

]
x1+γ . (44)

Inserting the similarity transformation (44) into (2),
one can see that the function F(s) should satisfy the
reduced equation

(1+ γ)
(

a3

a2
− s

)
dF
ds

+ 2F(s) = 0, (45)

which admits the solution

F(s) = F0

(
a3

a2
− s)

) 2
1+γ

. (46)
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With the help of (46), the similarity solution (44) in
terms of the original coordinate x,t becomes

u = F0

(
a3

a2
− t

) 2
1+γ

exp

([
a3

a2
− t

]
x1+γ

)
. (47)

The behavior of this solution against t and x is shown
graphically in Figures 3 and 4.

Conclusions

It can be concluded that, based on using the Lie
group approach for the integro-differential equation, in
addition to the general similarity solution, wide classes

of similarity solutions have been obtained. Depend-
ing on the Lie group parameters, it is shown here that
some types of similarity solutions for the fragmenta-
tion equation (2) are mapped to well known functions
such as Kummer’s and Fox functions. Moreover, the
obtained solutions are compared with those obtained
previously by many authors, and it is shown that some
of these solutions can be constructed as particular cases
from our solutions. Three types of the obtained solu-
tions are shown graphically.

Finally, the Lie group method represents one of the
most powerful analytical techniques for solving either
differential or integro-differential equations.
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